The photographs of snowflakes gemoetry show how many variations nature creates while keeping strictly within a triangular, and hence hexagonal framework.

The shape of the snowflake is determined broadly by the temperature and humidity at which it is formed.

It is unlikely that any two snowflakes are alike due to the estimated 1019 (10 quintillion) water molecules which make up a typical snowflake, which grow at different rates and in different patterns depending on the changing temperature and humidity within the atmosphere that the snowflake falls through on its way to the ground.

Snowflakes Photographs
 

About Snowflakes

snowflake is a single ice crystal that has achieved a sufficient size, and may have amalgamated with others, then falls through the Earth’s atmosphere as snow. Each flake nucleates around a dust particle in supersaturated air masses by attracting supercooled cloud water droplets, which freeze and accrete in crystal form.

Complex shapes emerge as the flake moves through differing temperature and humidity zones in the atmosphere, such that individual snowflakes differ in detail from one another, but may be categorized in eight broad classifications and at least 80 individual variants. The main constituent shapes for ice crystals, from which combinations may occur, are needle, column, plate, and rime. Snow appears white in color despite being made of clear ice. This is due to diffuse reflection of the whole spectrum of light by the small crystal facets of the snowflakes.

Formation of Snowflakes

Snowflakes nucleate around mineral or organic particles in moisture-saturated, subfreezing air masses. They grow by net accretion to the incipient crystals in hexagonal formations. The cohesive forces are primarily electrostatic.

Classification of Snowflakes Geometry

Magono and Lee devised a classification of freshly formed snow crystals that includes 80 distinct shapes. They are listed in the following main categories (with symbol):

  • Needle crystal (N) – Subdivided into: Simple and combination of needles
  • Columnar crystal (C) – Subdivided into: Simple and combination of columns
  • Plate crystal (P) – Subdivided into: Regular crystal in one plane, plane crystal with extensions, crystal with irregular number of branches, crystal with 12 branches, malformed crystal, radiating assemblage of plane branches
  • Combination of columnar and plate crystals (CP) – Subdivided into: Column with plane crystal at both ends, bullet with plane crystals, plane crystal with spatial extensions at ends
  • Columnar crystal with extended side planes (S) – Subdivided into: Side planes, scalelike side planes, combination of side planes, bullets, and columns
  • Rimed crystal (R) – Subdivided into: Rimed crystal, densely rimed crystal, graupellike crystal, graupel
  • Irregular snow crystal (I) – Subdivided into: Ice particle, rimed particle, broken piece from a crystal, miscellaneous
  • Germ of snow crystal (G) – Subdivided into: Minute column, germ of skeleton form, minute hexagonal plate, minute stellar crystal, minute assemblage of plates, irregular germ

 

Find out more about the geometry of snowflakes in this study